YOLO-Series

| Detection | Instance Segmentation | Pose | | :---------------: | :------------------------: |:---------------: | | | | | | Classification | Obb | | :------------------------: |:------------------------: | | | | Head Detection | Fall Detection | Trash Detection | | :------------------------: |:------------------------: |:------------------------: | | || | YOLO-World | Face Parsing | FastSAM | | :------------------------: |:------------------------: |:------------------------: | | || ## Quick Start ```Shell # customized cargo run -r --example yolo -- --task detect --ver v8 --nc 6 --model xxx.onnx # YOLOv8 # Classify cargo run -r --example yolo -- --task classify --ver v5 --scale s --width 224 --height 224 --nc 1000 # YOLOv5 cargo run -r --example yolo -- --task classify --ver v8 --scale n --width 224 --height 224 --nc 1000 # YOLOv8 cargo run -r --example yolo -- --task classify --ver v11 --scale n --width 224 --height 224 --nc 1000 # YOLOv11 # Detect cargo run -r --example yolo -- --task detect --ver v5 --scale n # YOLOv5 cargo run -r --example yolo -- --task detect --ver v6 --scale n # YOLOv6 cargo run -r --example yolo -- --task detect --ver v7 --scale t # YOLOv7 cargo run -r --example yolo -- --task detect --ver v8 --scale n # YOLOv8 cargo run -r --example yolo -- --task detect --ver v9 --scale t # YOLOv9 cargo run -r --example yolo -- --task detect --ver v10 --scale n # YOLOv10 cargo run -r --example yolo -- --task detect --ver v11 --scale n # YOLOv11 cargo run -r --example yolo -- --task detect --ver rtdetr --scale l # RTDETR cargo run -r --example yolo -- --task detect --ver v8 --model yolo/v8-s-world-v2-shoes.onnx # YOLOv8-world # Pose cargo run -r --example yolo -- --task pose --ver v8 --scale n # YOLOv8-Pose cargo run -r --example yolo -- --task pose --ver v11 --scale n # YOLOv11-Pose # Segment cargo run -r --example yolo -- --task segment --ver v5 --scale n # YOLOv5-Segment cargo run -r --example yolo -- --task segment --ver v8 --scale n # YOLOv8-Segment cargo run -r --example yolo -- --task segment --ver v11 --scale n # YOLOv8-Segment cargo run -r --example yolo -- --task segment --ver v8 --model yolo/FastSAM-s-dyn-f16.onnx # FastSAM # Obb cargo run -r --example yolo -- --ver v8 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv8-Obb cargo run -r --example yolo -- --ver v11 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv11-Obb ``` **`cargo run -r --example yolo -- --help` for more options** ## YOLOs configs with `Options`
Use official YOLO Models ```Rust let options = Options::default() .with_yolo_version(YOLOVersion::V5) // YOLOVersion: V5, V6, V7, V8, V9, V10, RTDETR .with_yolo_task(YOLOTask::Classify) // YOLOTask: Classify, Detect, Pose, Segment, Obb .with_model("xxxx.onnx")?; ```
Cutomized your own YOLO model ```Rust // This config is for YOLOv8-Segment use usls::{AnchorsPosition, BoxType, ClssType, YOLOPreds}; let options = Options::default() .with_yolo_preds( YOLOPreds { bbox: Some(BoxType::Cxcywh), clss: ClssType::Clss, coefs: Some(true), anchors: Some(AnchorsPosition::After), ..Default::default() } ) // .with_nc(80) // .with_names(&COCO_CLASS_NAMES_80) .with_model("xxxx.onnx")?; ```
## Other YOLOv8 Solution Models | Model | Weights | Datasets| |:---------------------: | :--------------------------: | :-------------------------------: | | Face-Landmark Detection | [yolov8-face-dyn-f16](https://github.com/jamjamjon/assets/releases/download/yolo/v8-n-face-dyn-f16.onnx) | | | Head Detection | [yolov8-head-f16](https://github.com/jamjamjon/assets/releases/download/yolo/v8-head-f16.onnx) | | | Fall Detection | [yolov8-falldown-f16](https://github.com/jamjamjon/assets/releases/download/yolo/v8-falldown-f16.onnx) | | | Trash Detection | [yolov8-plastic-bag-f16](https://github.com/jamjamjon/assets/releases/download/yolo/v8-plastic-bag-f16.onnx) | | | FaceParsing | [yolov8-face-parsing-dyn](https://github.com/jamjamjon/assets/releases/download/yolo/v8-face-parsing-dyn.onnx) | [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ/tree/master/face_parsing)
[[Processed YOLO labels]](https://github.com/jamjamjon/assets/releases/download/yolo/CelebAMask-HQ-YOLO-Labels.zip)[[Python Script]](../../scripts/CelebAMask-HQ-To-YOLO-Labels.py) | ## Export ONNX Models
YOLOv5 [Here](https://docs.ultralytics.com/yolov5/tutorials/model_export/)
YOLOv6 [Here](https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX)
YOLOv7 [Here](https://github.com/WongKinYiu/yolov7?tab=readme-ov-file#export)
YOLOv8, YOLOv11 ```Shell pip install -U ultralytics # export onnx model with dynamic shapes yolo export model=yolov8m.pt format=onnx simplify dynamic yolo export model=yolov8m-cls.pt format=onnx simplify dynamic yolo export model=yolov8m-pose.pt format=onnx simplify dynamic yolo export model=yolov8m-seg.pt format=onnx simplify dynamic yolo export model=yolov8m-obb.pt format=onnx simplify dynamic # export onnx model with fixed shapes yolo export model=yolov8m.pt format=onnx simplify yolo export model=yolov8m-cls.pt format=onnx simplify yolo export model=yolov8m-pose.pt format=onnx simplify yolo export model=yolov8m-seg.pt format=onnx simplify yolo export model=yolov8m-obb.pt format=onnx simplify ```
YOLOv9 [Here](https://github.com/WongKinYiu/yolov9/blob/main/export.py)
YOLOv10 [Here](https://github.com/THU-MIG/yolov10#export)